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Piezoelectric tube actuators with cantilevered optical fibers have enabled the miniaturi-

Davis J. McGregor
Department of Aerospace and
Mechanical Engineering,
University of Arizona,

Tucson, AZ 85721

zation of scanning image acquisition techniques for endoscopic implementation. To
achieve raster scanning for such a miniaturized system, the first resonant frequency
should be of the order of 10s of Hz. We explore adding a mass at an intermediate loca-
tion along the length of the fiber to alter the resonant frequencies of the system. We pro-
vide a mathematical model to predict resonant frequencies for a cantilevered beam with

an intermediate mass. The theoretical and measured data match well for various fiber
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1 Introduction

Forward-looking, miniature endoscopic imaging systems have
been enhanced by the recent introduction of scanning systems
based on using quartered piezoelectric tube actuators (piezos)
with cantilevered optical fibers. Such scanning systems take
advantage of the inverse piezoelectric effect, which causes the
piezoceramic material to exhibit a mechanical response, such as
expansion and contraction, when a voltage is applied. Longitudi-
nal quartering of the piezoelectrodes allows for four independent
expansion/contraction surfaces. Applying an equal and opposite
sinusoidal voltage across two opposing electrodes achieves a
back-and-forth bending motion of the piezo. When a cantilevered
fiber is held concentrically inside of a quartered piezo and the piezo
is driven at the resonant frequency of the cantilevered fiber, the
fiber tip deflection amplitude is enhanced. Mechanical amplification
of several hundred times is possible when operating at the first reso-
nant frequency. This amplification turns a few microns of deflection
of the piezo into hundreds of microns of deflection or more at the
fiber tip. Various scanning patterns, such as spiral, Lissajous, or
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lengths, mass sizes, and mass attachment locations along the fiber.
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raster, can be achieved through the control of the frequency and
phase of the bi-axial electrodes present in a quartered piezo [1-3].

The major advantages of a piezoscanning system are the ability
to electronically control the imaging field of view as well as the
potential for higher resolution that can be achieved within the
same diameter as miniature coherent fiber bundles or distal endo-
scopic tip charge-coupled devices (CCDs) [2]. The use of a vari-
ety of fiber types in the piezofiber system also provides the ability
to utilize a variety of imaging modalities such as surface reflec-
tance or fluorescence imaging, optical coherence tomography
(OCT), and confocal or multiphoton microscopy (MPM).

Several researchers have already presented scanning fiber endo-
scope proof-of-concept designs for OCT, MPM, and wide field
imaging [2,4-6]. Our lab is working to design and build a rigid
endoscope capable of reflectance imaging, OCT, and MPM with a
1.5 mm diameter imaging channel utilizing a forward-looking scan-
ning mechanism [7]. This endoscope could be useful in a variety of
clinical applications, such as visualization of the ovaries and distal
fallopian tubes where ex vivo studies suggest that ovarian cancer is
detectable by fluorescence imaging, OCT, and MPM [8-12].

For a raster scan pattern, the two orthogonal axes of the quar-
tered piezo are driven at different frequencies, a slow axis, and a
fast axis. To acquire images at video rate, the slow axis should be
of the order of 10s of Hz (ideally 30-40 Hz) while the fast axis
should be at least 100 times faster (in the kHz range). One method
of achieving this is to have a system with a first resonant
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frequency in the 10’s of Hz and a higher (e.g., third) resonant fre-
quency in the kHz range. However, at the piezo and fiber dimen-
sions required for a miniature endoscope, the first resonant
frequency tends to be in the kHz range, rather than the 10s of Hz
as required.

End masses have been suggested by others to tailor vibrational
parameters [13—15]. Other piezosystems include mass placements
at the tip of the cantilevered fiber or a tube encasing some length
of the fiber. These solutions work well when only the first reso-
nant frequency is required, as is the case with a spiral or Lissajous
pattern. However, these solutions are not suitable for higher order
resonant frequencies. An end mass can create a nodal point around
which the fiber tries to vibrate, thereby reducing the tip deflection
[16], and a long single tube mass prevents the fiber from bending
as required to produce higher order mode shapes.

In this paper, we examine the effects of an added mass at an
intermediate location along the fiber on the resonant frequencies
and tip deflection characteristics of a piezo-driven scanning fiber.
We provide a mathematical model to predict the resonant frequen-
cies of the system and compare the predicted values to measure-
ments obtained from experimental setups. We show that an added
mass on the fiber can provide another variable (besides piezo and
fiber dimensions or material characteristics) to broaden the solu-
tion space for fiber scanning. These changes increase the suitabil-
ity of a cantilevered fiber piezoscanning for use as part of a
multimodality imaging endoscope system. The ability to predict
the frequency allows us to tailor a mass geometry and location to
produce the desired difference between the first and third resonant
frequencies required for raster scanning. Ultimately, this approach
can be used to design any scanning fiber system with an interme-
diate mass without the need for extensive experimental testing.

2 Methods

An optical fiber was modeled as a fixed-free beam, with a
stainless-steel bead attached to the underside of the fiber at an
intermediate location. To test the viability of using the first and
third resonant frequencies to drive the scanning fiber in a raster
pattern, we constructed a larger scale model of the proposed endo-
scopic fiber scanning system and placed a mass at the nodal point
of the third resonant frequency. The motivation for this approach
is that the mass can act as a forced nodal point, so by aligning it
with a natural nodal point, that resonant frequency should be
affected less than the other resonant frequencies, which do not
share that nodal point in terms of the change in frequency and tip
deflection. At the same time, a mass placement further from the
base of the fiber will cause the first resonant frequency to
decrease. The fiber can be driven both horizontally, as shown in
the top image of Fig. 1, and vertically, as shown in the bottom
image of Fig. 1.

2.1 Mathematical Derivation. Equations describing the
motion of a beam with an intermediate and an end mass that have
nonnegligible moments of inertia were derived by Hamdan et al.
based on the Euler—Bernoulli beam theory [17]. In this approach,
the beam is split into two segments, one from the base to the cen-
ter of mass of the added mass (CoM), and the other from the CoM
to the tip of the beam. This can be generalized to any number
masses along the length of the beam by splitting it into additional
segments and applying the correct boundary conditions. The inter-
ested reader may refer to the Appendix for more information.
Both beam segments must individually satisfy the differential
equation for simple harmonic motion
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Here, y, describes the displacement of the beam in the driving
direction from the base of beam to the CoM, and y, is the dis-
placement of the beam in the driving direction from the CoM to
the tip. n is the fractional distance along the beam from the base
to the CoM and [ is the length of the beam
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where A is the cross-sectional area of the beam (nr2), y is the den-
sity of the material of the beam, w is the resonant frequency of the
beam in rad/s, E is Young’s modulus of the beam material, / is the
second moment of area of the beam, and f is the frequency in Hz.
The general solution to the ordinary differential equations in
Egs. (1) and (2) is

hal (Xl) = 0 sin(Axl) (5)
+o sin i(Axy) + oy cos h(Axy)
yz(xz) = U5 sin(/bcz)

6

+azsinh(Ax;) + agcosh(Axs,) ©

Boundary conditions are imposed at the base of the beam

(x; =0), the CoM (x; =In and x, = 0), and at the end of the
beam (x, = I(1 — 7))
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Here, J and M are the moment of inertia and mass of the added
mass, respectively. J is used to evaluate a boundary condition at
the location of the CoM, so additional moment of inertia from the
offset distance from the base of the beam is not included. How-
ever, if using an asymmetric mass with respect to the overall sys-
tem, as was used in this paper, the additional moment of inertia
due to the offset of the CoM compared to the beam does need to
be included using the parallel axis theorem for the direction for
which the CoM does not align with the rotation axis. In the experi-
mental setup described here, the horizontal axis is not affected by
the offset, but the vertical axis is
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JHorizontal = Jmass (15) Plugging in Egs. (5) and (6) into Egs. (7)—(14) produces a system
a of linear equations for the variables o, through ag which can be
Ivertical = Jmass + M (Fiper + s (16)  put into matrix form
0 1 0 1
1
1 0 1 0
sin(Z cos(Z sinh(Z
(Zl) , (Zl) h(zl) cosh(Zy) -1 -1
cos —sin cos
@) @) shiZ1) sinh(Z;) ~1 0 ~1 0
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Here, Z; = Aln and Z, = Al(1 —n). The determinant of this
matrix is then set equal to zero, and solutions for A are found.
There are infinitely many solutions with the smaller values,
greater than zero, referring to the lower order modes of the sys-
tem. The values of A are then plugged into Eq. (4) to calculate the
corresponding frequencies.

Since the damping ratio cannot be known without an experi-
mental setup, the mathematical model assumes an undamped
case. This analysis does not take into consideration the boundary
conditions imposed by the base excitation from the piezo. Base
excitation amplitude relates to the overall amplitude of the move-
ment of the system, but is assumed to not significantly alter the
resonant frequencies of the system [18,19].

2.2 Experimental Setup. The experimental setup consisted
of a piezo (Boston Piezo, MA) with DCF13 fiber (Thorlabs, NJ)
held in the piezo with a two-part epoxy (Fiber Instrument Sales,
NY). The piezo was made from PZT-4 and was mounted in a cus-
tom three-dimensional printed part. A TD250 channel amplifier
(Piezo-Drive, Callaghan, NSW, Australia), in conjunction with a
waveform generator (Agilent, CA), was used to drive the piezo-
fiber systems. The fiber length from the end of the piezo to the

Y

fiber tip was measured by taking an image of the system with a
ruler just behind the fiber. In maGer (National Institutes of Health,
USA), the mm markings on the ruler were used to set the scale of
the image, then a line was drawn from the base of the fiber to the
tip and was measured according to the scale. This procedure was
repeated with multiple pictures to get an average length and a
standard deviation, which was used as the measurement uncer-
tainty. The length measurement and associated uncertainty were
used as inputs for the mathematical model to obtain predicted
ranges of resonant frequencies. The predicted frequency ranges
provided a starting point for finding the resonant frequencies
experimentally. Beginning near each predicted resonant fre-
quency, the waveform generator was tuned coarsely by 1Hz to
find the approximate frequency, then fine-tuned by 0.1 Hz to find
the frequency that produced the greatest deflection. There is an
assumed +0.1% uncertainty for the frequency measurements.
Once the frequency was determined, the input voltage was turned
off then stepped up from O to the maximum of RMS voltage of
179.2V in 20 V increments.

Digital cameras (Nikon, Tokyo, Japan) were placed above and
to the side of the fiber to capture the shape as it was excited at
each resonant frequency to confirm the order that was excited

Horizontal Axis

Top View

)

Side View

Fig. 1

Vertical Axis
I(1-n) .) ]

A top (top) and side (bottom) view of the system investigated in this paper with the

variables of the system labeled. To the right is a three-dimensional view of the system show-
ing the axes being excited. The fiber is split into two segments, each with a new coordinate
system (x1, y1) from the base of the fiber to the CoM, and (x2,y2) from the CoM to the tip of
the fiber. —beam length, Iy—length from the base of the fiber to the CoM, /(1—y)—Ilength
from the CoM to the fiber tip, M—mass of the added mass, J—moment of inertia of the added

mass, and CoM—Center of mass.
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(i.e., first, second, third,...), and a high-speed camera (FastCAM
Mini AX 200, Tokyo, Japan) was focused on the fiber tip. This
setup is shown in Fig. 2. An image of a still fiber was used to cali-
brate the images within the FasTcam software by converting num-
ber of pixels to microns using 105 um outer diameter of the first
clad of the DCF13 fiber as the known reference. A still image
obtained by setting an exposure time that could show the full path
of the fiber tip was acquired. Then using the measuring tool within
the software, a line was drawn between the extreme edges and the
length of the line, which is equal to the total deflection, was
obtained directly from the software.

Once the experimental results were acquired with the massless
fiber system, a stainless-steel bead (Cospheric, CA) was weighed,
then glued at the approximate location of the node of the third res-
onant frequency. The location of the mass was determined in the
same way as the length of the fiber but was measured as the dis-
tance away from the fiber tip. The weight of the mass along with
the known density of stainless-steel was used to calculate the
radius of the mass, which was then used to calculate the moment
of inertia of the mass

4

M = Ymass * gnrgnass an
2

Tmass = <My (18)

The mass, moment of inertia, location, and associated uncertain-
ties were used as additional inputs for the mathematical model to
obtain predicted resonant frequency ranges of the system with the
mass. The output from the mathematical model was again used to
provide starting ranges for each resonant frequency for the experi-
mental procedure. The system characteristics are listed in Table 1.

We then used the mathematical model to simulate the reso-
nance frequencies in the horizontal axis for an arbitrary length of
fiber with a spherical stainless-steel mass being placed at various
locations along the mass, starting at the base of the fiber and mov-
ing to the tip in increments of 1% of the fiber length. This simula-
tion was repeated for increasingly heavier masses (M =0 to

Digital Camera 2

Digital Camera 1

High Speed Camera

Fig. 2 Diagram of the setup of cameras used to observe the
fiber and collect data for the experimental setup. The digital
cameras observe the side views of the fiber while being excited
to verify the shape of fiber at each resonant frequency. The
high-speed camera looked at the tip of the fiber and provided
deflection data at each resonant frequency.

021007-4 / Vol. 4, MAY 2021

M = 15 % mygper) With the corresponding increases in moment of
inertia as determined using Eqs. (17) and (18). Figure 3 shows this
plot using a 10 mm length of fiber as an example.

Two additional setups each with a different fiber length and
added mass were constructed to test two separate conditions simu-
lated in Fig. 3. The first additional system exhibited similar fre-
quency characteristics as seen in the thin dotted lines of Fig. 3
where the frequency peaks align with the nodal points. A fiber
near 60 mm and a mass which was less than 4 times the mass of
the fiber was used. The second additional system exhibited similar
frequency characteristics as seen in the medium thickness dotted
line of Fig. 3. With increasing mass and moment of inertia, the
frequency peaks of the higher resonant frequencies occur when
the mass is located near the antinodes. For this system, a fiber
length near 30mm and a mass which was at least 12 times the
weight of the fiber were selected. The exact fiber lengths were
determined experimentally by finding the first 10 resonant fre-
quencies then determining the length of fiber for which the mathe-
matical model provides predicted frequencies within the range of
observation uncertainty. The characteristics for both additional
systems are listed in Table 2.

In both of these setups, initial resonance frequencies without
the mass were found, then the mass was attached toward the end
of the fiber, the first four resonant frequencies were experimen-
tally determined for the horizontally driven case, then the mass
was removed and reattached at a new location, which was further
away from the tip of the fiber. Images of the setup with the mass
in each location were used to determine the location of the mass
as a fraction of the length of the fiber (). In ImagelJ, a line was
drawn from the base of the fiber to the tip and the scale was set to
1, then a line from the base to the center of the mass was drawn
and measured. This process was repeated with both setups to
acquire data points at multiple locations along the fiber.

3 Results

Table 3 compares the mathematical and experimental results of
the resonant frequencies for the initial massless fiber system. The
predicted values from the mathematical model had a 4.7% error
compared to the horizontal axis and a 5.2% error compared to the
vertical axis. We calibrated the mathematical model by adjusting
the fiber length in each direction to match the experimental obser-
vations. Calibrated lengths of 34.745 mm in the horizontal direc-
tion and 34.84 mm in the vertical direction were found to agree
with the experimental values within the uncertainty range of the
observed resonant frequencies. The slight difference in resonant
frequencies between the two axes is likely due to the asymmetry
of the fiber glued into the piezo.

The resonant frequencies for the initial system with the mass
were calculated both without and with the length calibration. For
the uncalibrated model, the original fiber length measurement and
the mass weight with associated uncertainties were used and the
mass placement was assumed to be at the nominal third resonant
node location (0.868 x /). These calculated values are listed in
Table 4 as Math-H for the horizontally driven direction, and
Math-V for the vertically driven direction. For the calibrated
model, the calibrated lengths found from the massless system in

Table 1 Initial test system characteristics for a mass located
near the third harmonic nodal point

Property Values
Fiber length 34.0 £0.5mm
Added mass 4.50 = 0.05mg
Mass radius 0.51 £ 0.004 mm
Mass location 4.55 = 0.03mm

From fiber tip

Transactions of the ASME
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Frequency (Hz)
N

0 0.2 0.4 0.6 0.8 1
Mass location as a fraction of fiber length (1)

Fig. 3 Simulation of a 10 mm fiber with an attached spherical
stainless-steel mass, which increases in both mass and
moment of inertia as the mass location is moved along the
length of the fiber. The colors indicate different resonant modes
(blue—first, orange—second, yellow—third, purple—fourth).
The increase in mass and associated moment of inertia are indi-
cated by gradually thicker lines from a minimum of M=J =0 to
a maximum of M =15 « Mspe, with the radius determined by
rearranging Eq. (17) and moment of inertia found using Eq. (18).

Table 2 Characteristics for the two additional systems

Property System 1 System 2
Fiber length 30.99 mm 58.35mm
Added mass 13.00 = 0.05 mg 4.50 = 0.05mg

Table 3 Resonant frequencies predicted by mathematical cal-
culation (Math) and the experimental data for the described sys-
tem without an attached mass (exp.-H and exp.-V)

Math Math Adj.-H Exp.-H Math Adj.-V  Exp.-V
First 84.8-90.0 83.6 83.6 £0.1 83.2 83.1 0.1
Second 531.7-563.9 5244  524.6=*05 521.8 521.7x0.5
Third 1488.8-1579.0 1468.4 1468.4*15 1461.2 1461.2*1.5
Fourth 2917.5-3094.2 2877.6 2877.8*+29 28634 2862.9*29

Once experimental values were acquired, values for the length in each
driving direction were adjusted to match within the range of observation
uncertainty (math adj.-H and math adj.-V).

addition to the mass and its physically measured location along
with the error measurements were used as inputs into the mathe-
matical model to find an appropriate range of frequencies. The
calibrated mathematical models of the system with the mass are
listed as math adjusted-H and math adjusted-V for the horizontal
and vertical directions in Table 4. The experimental measure-
ments are listed as exp.-H and Exp.-V for the horizontal and verti-
cal directions, respectively. This shows a maximum error of 6.6%
for the uncalibrated calculated frequencies to the experimentally
found frequencies, and a maximum error of 1.5% from the cali-
brated frequencies to the experimentally found frequencies. The
residual error in the calibrated model is likely due to the differ-
ence between the assumed mass location and the real mass
location.

Images of the fiber shape were taken at all resonant modes both
with and without the attached mass. By comparing the observed
fiber shape to the expected shape for each resonant frequency
mode, we were able to ensure that the correct resonant frequency
had been found. Figure 4 shows images of the fiber shapes at each
resonant frequency for both the massless system and the system
with an attached mass.

The measurements of the amplitude showed an approximately
linear increase in deflection as a function of voltage for every res-
onant frequency. Deflection of the fiber when excited at the first
resonant frequency increased as a result of adding the mass but
decreased for all other resonant frequencies as shown in Fig. 5.

For the additional two systems, the fiber was cleaved to an
approximate length, then the resonance frequencies were found
experimentally. We found the calibrated length using the experi-
mental data. The calibrated length and mass for both cases were
used as inputs to the mathematical model to produce graphs of
resonance frequencies as a function of mass location. The theoret-
ical graphs and experimental data for each system have been plot-
ted together in Fig. 6.

4 Discussion

These experiments showed that the described mathematical cal-
culations can predict resonant frequencies of a piezofiber system
with an intermediate mass within 10% of the experimental values
up to the fourth resonant frequency without building and testing
the system first. If measurements on the constructed massless sys-
tem are acquired, predictions may be even better. It is possible
that the predictions above the fourth resonant frequency are also
in good agreement with the physical system. However, due to the
small deflection of the fiber tip, the higher resonant frequencies
were experimentally unidentifiable.

For the initial experimental setup the tip deflection of the fiber
when excited at the first resonant frequency with the added mass
was more than double the tip deflection of the massless system.
This amplitude increase is likely a combined effect of the
increased momentum due to the mass as well as the lowered fre-
quency. For the higher-order modes, the mass acted as a forced
nodal point at a location that may not have coincided with the

Table 4 Comparison of mathematical calculation and experimental data for the system with an attached mass located 4.493 mm

from the fiber tip

Math-H Math Adj.-H Exp.-H Math-V Math Adj.-V Exp.-V

First 22.4-23.62 22.0-22.3 224+02 22.3-23.6 21.9-22.2 223+02
Second 481.4-510.2 473.3-474.9 4704+0.5 463.7-490.5 453.8-455.8 449.7 + 0.4
Third 1429.2-1512.6 1410.4-1412.6 14004 + 1.4 1265.5-1331.8 1246.1-1252.2 12570+ 1.3
Fourth 2547.1-2694.1 2515.2-2530.6 2564.4 % 2.6 2087.8-2415.1 2247.5-2256.6 20362+2.2

Math-H and math-V are the predicted frequencies from the mathematical model using the base assumptions of no damping, using the measured fiber
length, the mass of the bead, and assuming ideal location at 0.868/ in the horizontal and vertical directions, respectively. Math adj.-H and math adj.-V are
the predicted frequencies from the mathematical model using the calibrated fiber length in addition to the mass and the measured mass location for the
horizontal and vertical directions, respectively. Exp.-H and exp-V. are the experimentally found resonant frequencies for the horizontal and vertical direc-

tions, respectively.
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3rd

4th
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Fig. 4 Long exposure images of the fiber vibrating at the first through the fourth resonant
modes. A 642nm laser diode is coupled into the fiber for ease of visualization. The images
on the left are the massless fiber system, and the images on the right are the fiber with the

mass.

exact natural nodal point causing less deflection. However, in the
horizontal direction, where the mass is near the natural nodal point
and the CoM was aligned with the fiber, the average percent
decrease in deflection between the system without and with the
mass is less for the third resonant frequency (26.8%) than it is for
the second (62.8%) or fourth (31.4%) resonant frequencies.

15t Harmonic
—F—Horzontal, no mass

— T ~Horizontal, with mass
4 F|—F—Vertical, no mass

— T - Vertical, with mass

Tip Deflection (mm)

0 20 40 60 80 100 120 140 160 180

Drive Voltage (VRMS)
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£03 .
B
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°
0 0.2 oL
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Drive Voltage (VRMS)

Tip Deflection (mm)

Tip Deflection (mm)

If a point mass is assumed, then the resonant frequency would

reach its original massless value whenever the mass is located at a
corresponding nodal point [20,21]. For a mass with a small
moment of inertia, the general trend holds true where the resonant
frequency becomes closer to the original value when placed at a
nodal point [22]. This trend was verified as shown in the plot on

2"Y Harmonic
121
—F—Horzontal, no mass
1H T ~Horizontal, with mass
—F— Vertical, no mass
— T - Vertical, with mass
0.8t I
0.6
0.4+
0.2+
0
0 20 40 60 80 100 120 140 160 180
Drive Voltage (VRMS)
4™ Harmonic
0.5r
—f—Horzontal, no mass
— T ~Horizontal, with mass
0.4 ||—F— Vertical, no mass ) I
— T - Vertical, with mass I L
0.3
0.2f
0.1
0

0 20 40 60 80 100 120 140 160 180

Drive Voltage (VRMS)

Fig. 5 Plots of the tip deflection as the applied voltage is increased. Each plot is for one of the resonant modes showing the
system driven in both the horizontal and vertical directions, for both the massless fiber system and the system with the mass.
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Horizontal, M=4.7mg,|=58.35mm

Horizontal, M=13mg, 1=30.99mm
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<
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0
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Mass location as a fraction of fiber length (1)

Mass location as a fraction of fiber length (1)

Fig. 6 Theoretical and measured data of resonant frequencies as a function of mass location along the fiber. The plot on the
left is for a longer fiber (59.35 mm) and a smaller mass (4.7 mg). The plot on the right is a shorter fiber (30.99 mm) and larger

mass (13 mg).

the left of Fig. 6. If a theoretical massless element with a moment
of inertia were attached to a beam, the highest resonant frequen-
cies happen when the element is located near the antinode [21].

A physical element with both mass and moment of inertia will
have resonant frequency characteristics between these two theo-
retical cases as shown in Fig. 3. A mass with a large enough
moment of inertia can cause the inversion of the peaks where the
peaks of the frequency curve are no longer when the mass is
placed at the nodal points, but rather when the mass is placed at
the antinodes. This trend was verified as shown in the plot on the
right of Fig. 6 where the fourth resonance frequency curve
inverted with a mass that was 15.8 times the mass of the fiber.
The moment of inertia of the mass inhibits rotation. When
positioned at a nodal point, where there is the highest amount of
rotation, it is likely that the beam is unable to provide the
required bending moment at that location. As a result, the nodal
point may shift, and the resonant frequency will decrease. The
size and weight of a mass needed to cause the inversion of the
frequency curves is dependent on the beam properties and
dimensions.

Whirling was observed near resonant frequencies for all con-
structed systems. The whirling in the massless systems was more
stable and occurred over a broader frequency range than the sys-
tems with the mass. The systems with the mass exhibited unstable
whirling motion but only over a narrow range of frequencies. This
is expected due to the asymmetry of the mass which changes the
resonant frequencies of the two directions and dampens the oft-
axis motion [23].

5 Conclusion

The mathematical model presented here can be a powerful
design tool for scanning systems, which utilize cantilevered fibers
driven at multiple resonant frequencies. The results suggest that
piezo-driven scanning fiber systems may be driven at the first and
a higher order frequency where the ratio between the frequencies
of the modes may be chosen by design. A fast axis moving on the
order of a few kHz and a slow axis moving on the order of 10 s of
Hz enables the use of raster scanning patterns for endoscopic
imaging systems. The increased deflection of the first resonant fre-
quency with an added mass helps reduce the voltage requirement
for the slow scanning axis. The moment of inertia and location of
an added mass can significantly alter the frequency response of
the system. This is more drastic at the higher order modes. A mass
with a small moment of inertia placed at a natural nodal point will
have only a minor impact on the corresponding resonant
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frequency. However, if a large mass is to be used in order to lower
the first resonant frequency, an inversion in the higher order reso-
nance frequency curves may occur. With an asymmetric mass, the
suppression of the whirling motion at higher order modes when
driven slightly off resonance is advantageous for image recon-
struction if the proper amplitude is achieved. The mathematical
model outlined in this paper can be used to optimize a scanning
system with an arbitrary intermediate mass with final resonance
frequencies being within 10% of the predicted values.
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Appendix: Generalized Cantilevered Beam Equations

Hamdan et al. provided information for a system with one inter-
mediate mass and an end mass [17]. In the main text, we used the
boundary conditions from this literature to arrive at the system of
linear equations provided in matrix form by setting all boundary
conditions referring to an end mass to zero, as our setup did not
have an end mass. Here, we reiterate the boundary conditions pro-
vided by Hamdan et al. and provide the resulting system of
linear equations for a setup with one intermediate mass and an
end mass. We then expand upon the approach of dividing the
beam into segments to provide a generalized system of linear
equations for any number of intermediate masses with the option
of an end mass.

MAY 2021, Vol. 4 / 021007-7



End Mass

Here, we consider a cantilevered beam with an intermediate
mass and an end mass as shown in Fig. 7.

The following boundary conditions at x, = /(1 — 1) replace
Egs. (13) and (14) in the main text:

3= 10 =) | dvae = 10— )

e =10 ) _

2 — —
= = —0™My(xa =1(1—7)) (A2

Here, Je and M, are the moment of inertia and the mass of the
end mass, respectively. The resulting system of equation matrix is

dA% = dx, (AD) as follows:
|
[ 0 1 0 1 i
1 0 1 0
sin(Z;) cos(Z;) sinh(Z;) cosh(Z;) -1 0 -1
cos(Z;) —sin(Z;) cosh(Z;) sinh(Z;) -1 0 -1 0
—Aysin(Zy)  —Aycos(Z;)  Aysinh(Z;) Aycosh(Z;) 0 Ay 0 —Ay
—JA’cos(Z)) +JA*sin(Z;) —JA’cosh(Z)) —JAsinh(Z,) Ay 0 —Ay 0
—Aycos(Z;)  Aysin(Z;) Aycosh(Z;) Aysinh(Z,)  —Aysin(Z,)  —Aycos(Zy) Aysinh(Z;) Aycosh(Z,)
+MAsin(Z,) +MAcos(Z)) +MAsinh(Z,) +MAcosh(Z,) —J,A*cos(Zy) +J.A’sin(Zy) —J.A’cosh(Z,) —J,A’sinh(Z,)
0 0 0 0 —Aycos(Z,) Aysin(Z,) Aycosh(Z,) Aysinh(Z,)
L 0 0 0 0 +M,Asin(Z,) +M,Acos(Zy) +M,Asinh(Zy) +M,Acosh(Z,) |

The determinant of this matrix is then set to zero and solutions for
A can be found, the same way as is described in the main text.

Multiple Intermediate Masses

This set of equations can be generalized further for a system
with N number of integer masses and an end mass. This system
can be visualized in Fig. 8.

Each segment of the beam follows the differential equation for
simple resonant motion:

d*y;
dx{i - A4)’i(xi) =0,for0<x; <lIn, (A3)
d4yN+1 4 N
dXT*AyN‘*'l(xN-H):OfOI.OSXNﬁ—I S[ lizni
N+1 —

(A4)

Equation (A3) describes the segment of beam between intermedi-
ate mass i — 1 and intermediate mass i from i =1 up to N. Equa-
tion (A4) describes the final segment of the beam from the final
intermediate mass to the end mass or the end of the beam if no
end mass is present. As before the solution to this differential
equation for each segment is

0<x;<Img 0<x,<Il(1-m)

My ’]”E
]1 €

Fig. 7 Cantilevered beam system with one intermediate mass
and an end mass

4
0<x, <l Osxssl(l—Zm»)

i=1
O O O O O
M, M, My M, M,
i J2 I3 Ja Je

0<x <y 0<x,<ln, 0<x3<lIn3

Fig. 8 System with N=4 intermediate masses and an end
mass

021007-8 / Vol. 4, MAY 2021

yi(xi) :A(j+1) sin(Ax,-) +A(j+2) COS(AX,')

i (AS)
+A(j13) sin h(Ax;) + Aj1a) cos h(Ax;)

j=4(i—1forl <i<N+1 (A6)

The boundary conditions are applied at each intermediate mass as
follows:

yi(x1=0))=0 (A7)
dyi(i=0) _ A8)
dxl
yi(xi = ;) = yi1 (xip1 = 0) (A9)
dyi(xi =1n;) _ dyiti(xi1 = 0)
= A10
dx; dxiyy (AL0)
2(x; = In; dy? (xi4; =0
Eldy’ (xl - lrll) El yl+1(x2+1 )
i i (A11)
— Jio? dyi(xi = In;)
dX,'
dy3 (x; = In; Ay (xi1 =0
EI yl ()C - ’11) EI y1+l(x;rl )
dx; dxi,| (A12)
= —o’Myyi(x; = In;)
N
dyy 1 <XN+1 = 1(1 — Zn,-))
El e =l
AN+1
v (A13)
dyn+1 (XN+1 = l<1 - Zn,))
:ngZ i=1
dxy
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N
dyy.oq | v =1 1— Z’?i

A N
EI = = —0*Mynir | v =11 - 277
p

3
dxy

(Al4)

This results in a system of equations that can be put into an MxM matrix, where M = 4 % (N + 1). There are four unique submatrices

which comprise the full system of equations matrix
sin Z,'

cosZ;
—Aysin(Z;)
—JiA* cos(Z;)
—Aycos(Z;)
L +M,A Sil’l(Z,‘)

cosZ; sinhZ; coshZ;
—sinZ; coshZ; sinhZ;
—Aycos(Z;) Aysinh(Z;) Aycosh(Z;)
+JiAsin(Z;)  —JiA’cosh(Z;)  —J;A%sinh(Z;)
Aysin(Z;) Aycosh(Z;) Aysinh(Z;)
+M;Acos(Z;) +M;Asinh(Z;) +M;Acosh(Z;) |

Here, Z; = In;, J; and M, are the moment of inertia and mass of mass 7, respectively. A and y are the cross-sectional area and the density

of the beam material

—Aysin(Z,)
0 -1 0 -1 —J A cos(Z,)
P e T R N R
0 Ay 0 -4y —Aycos(Z,)
Ay 0 —Ay 0 +M,Asin(Z,)

—Aycos(Z,) Aysinh(Z,) Aycosh(Z,)
+J,Asin(Z,)  —J.A’cosh(Z,)  —J,A’sinh(Z,)
Aysin(Z,) Aycosh(Z,) Aysinh(Z,)
+M,Acos(Z,) +M,Asinh(Z,)  +M,Acosh(Z,)

where Z, = I(1 — Zf’zl 1;)- Repeating B; and C for as many intermediate masses are present in the system combined with the Start and
End matrices in the following way to form the full system of linear equations:

Start
B, C
: B,
0

The same process as described in the main text may be used to find the resonant frequencies of the system by setting the determinant of

this matrix to zero and solving for A.
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